Units and Dimensions

SI PREFIXES

The magnitudes of physical quantities vary over a wide range. The CGPM recommended standard prefixes for magnitude too large or too small so as to be expressed more compactly in certain powers of 10 .

Prefixes used for different powers of $\mathbf{1 0}$

Power of 10	Prefix	Symbol	Power of 10	Prefix	Symbol
10^{18}	exa	E	10^{-1}	deci	d
10^{15}	peta	P	10^{-2}	centi	c
10^{12}	tera	T	10^{-3}	milli	m
10^{9}	giga	G	10^{-6}	micro	μ
10^{6}	mega	M	10^{-9}	nano	n
10^{3}	kilo	k	10^{-12}	pico	p
10^{2}	hecto	h	10^{-15}	femto	f
10^{1}	deca	da	10^{-18}	atto	a

General Guidelines for using Symbols for SI Units, Some other Units, and SI prefixes

(i) Symbols for units of physical quantities are printed/written in Roman (upright type), and not in italics For Example : 1 N is correct but 1 N is incorrect.
(ii) (i) Unit is never written with capital initial letter if it is named after a scientist.

For example :

SI unit of force is newton (correct) not Newton (incorrect)
(ii) For a unit named after a scientist, the symbol is a capital letter.

But for other units, the symbol is NOT a capital letter.
For example : force
energy
$\rightarrow \quad$ newton (N)
electric current $\quad \rightarrow \quad$ ampere (A)
temperature
frequency
$\rightarrow \quad$ kelvin (K)

For example : length
$\rightarrow \quad$ hertz (Hz)
mass $\rightarrow \quad$ metre (m)
$\rightarrow \quad$ kilogram (kg)
luminous intensity $\quad \rightarrow \quad$ candela (cd)
time $\quad \rightarrow \quad$ second (s)
Note: The single exception is L, for the unit litre.
(iii) Symbols for units do not contain any final full stop at the end of recommended letter and remain unaltered in the plural, using only singular form of the unit.
For example :

Quantity	Correct	Incorrect
25 centimetres	25 cm	25 cm.
		25 cms

(iv) Use of solidus (/) is recommended only for indicating a division of one letter unit symbol by another unit symbol. Not more than one solidus is used.
For example :

Correct	Incorrect
$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{~m} / \mathrm{s} / \mathrm{s}$
$\mathrm{N} \mathrm{s} / \mathrm{m}^{2}$	$\mathrm{~N} \mathrm{~s} / \mathrm{m} / \mathrm{m}$
$\mathrm{J} / \mathrm{K} \mathrm{mol}$	$\mathrm{J} / \mathrm{K} / \mathrm{mol}$
$\mathrm{kg} / \mathrm{m} \mathrm{s}$	$\mathrm{kg} / \mathrm{m} / \mathrm{s}$

Units and Dimensions

(v) Prefix symbols are printed in roman (upright) type without spacing between the prefix symbol and the unit symbol. Thus certain approved prefixes written very close to the unit symbol are used to indicate decimal fractions or multiples of a SI unit, when it is inconveniently small or large.

For example :

megawatt	$1 \mathrm{MW}=10^{6} \mathrm{~W}$
centrimetre	$1 \mathrm{~cm}=10^{-2} \mathrm{~m}$
kilometre	$1 \mathrm{~km}=10^{3} \mathrm{~m}$
millivolt	$1 \mathrm{mV}=10^{-3} \mathrm{~V}$
kilowatt-hour	$1 \mathrm{~kW} \mathrm{~h}=10^{3} \mathrm{~W} \mathrm{~h}=3.6 \mathrm{MJ}=3.6 \times 10^{6} \mathrm{~J}$
microampere	$1 \mu \mathrm{~A}=10^{-6} \mathrm{~A}$
angstrom	$1 \mathrm{~A}=0.1 \mathrm{~nm}==10^{-10} \mathrm{~m}$
nanosecond	$1 \mathrm{~ns}=10^{-9} \mathrm{~s}$
picofarad	$1 \mathrm{pF}=10^{-12} \mathrm{~F}$
microsecond	$1 \mu \mathrm{~s}=10^{-6} \mathrm{~s}$
gigahertz	$1 \mathrm{GHz}=10^{9} \mathrm{~Hz}$
micron	$1 \mu \mathrm{~m}=10^{-6} \mathrm{~m}$

The unit 'fermi', equal to a femtometre or $10^{-15} \mathrm{~m}$ has been used as the convenient length unit in nuclear studies.
(vi) When a prefix is placed before the symbol of a unit, the combination of prefix and symbol is considered as a new symbol, for the unit, which can be raised to a positive or negative power without using brackets. These can be combined with other unit symbols to form compound unit.

For example :

Quantity	Correct	Incorrect
cm^{3}	$(\mathrm{~cm})^{3}=(0.01 \mathrm{~m})^{3}=\left(10^{-2} \mathrm{~m}\right)^{3}=10^{-6} \mathrm{~m}^{3}$	$0.01 \mathrm{~m}^{3}$ or $10^{-2} \mathrm{~m}^{3}$ or $1 \mathrm{~cm}^{3}$
$\mathrm{~mA}^{2}$	$(\mathrm{~mA})^{2}=(0.001 \mathrm{~A})^{2}=\left(10^{-3} \mathrm{~A}\right)^{2}=10^{-6} \mathrm{~A}^{2}$	$0.001 \mathrm{~A}^{2}$ or mA^{2}

(a) A prefix is never used alone. It is always attached to a unit symbol and written or fixed before the unit symbol.
For example : $10^{3} / \mathrm{m}^{3}=1000 / \mathrm{m}^{3}$ or $1000 \mathrm{~m}^{-3}$, but not $\mathrm{k} / \mathrm{m}^{3}$ or $\mathrm{k} \mathrm{m}{ }^{-3}$
(vii) Prefix symbol is written very close to the unit symbol without space between them, while unit symbols are written separately with spacing when units are multiplied together.

For example: | Quantity | Correct | Incorrect |
| :---: | :---: | :---: |
| | $1 \mathrm{~ms}^{-1}$ | 1 metre per second |
| 1 ms | 1 millisecond | 1 milli per second |
| 1 Cm | 1 metre second. | |
| 1 cm | 1 centimetre | 1 centimetre |
| | 1 coulomb metre | |

(viii) The use of double prefixes is avoided when single prefixe is available.

For example :

Quantity	Correct	Incorrect
$10^{-9} \mathrm{~m}$	1 nm (nanometre)	$1 \mathrm{~m} \mu \mathrm{~m}$ (millimicrometre)
$10^{-6} \mathrm{~m}$	$1 \mu \mathrm{~m}$ (micron)	1 mmm (millimillimetre)
$10^{-12} \mathrm{~F}$	1 pF (picofarad)	$1 \mu \mu \mathrm{~F}$ (micromicrofarad)
$10^{9} \mathrm{~W}$	1 GW (giga watt)	1 kMW (kilomegawatt)

(ix) The use of a combination of unit and the symbols for units is avoided when the physical quantity is expressed by combining two or more units.

Quantity	Correct	Incorrect
joule per mole Kelvin	$\mathrm{J} / \mathrm{mol} \mathrm{K}^{2}$ or $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$	joule / mole K or J /mol Kelvin or J/mole K
newton metre second	N m s	newton m second or N m second or N metre s or newton metre s

Units and Dimensions

DIMENSIONAL FORMULAE OF PHYSICAL QUANTITIES

Physical quantity	Relationship with other physical quantities	Dimensions	Dimensional formula
Area	Length \times breadth	[L²]	[$\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{0}$]
Volume	Length \times breadth \times height	[L ${ }^{3}$]	[$\mathrm{M}^{0} \mathrm{~L}^{3} \mathrm{~T}^{0}$]
Mass density	Mass/volume	[M]/[L $\left.{ }^{3}\right]$ or $\left[\mathrm{M} \mathrm{L}^{-3}\right]$	[$\mathrm{ML}^{-3} \mathrm{~T}^{0}$]
Frequency	1/time period	1/[T]	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}$]
Velocity, speed	Displacement/time	[L]/[T]	[$\mathrm{M}^{0} \mathrm{LT}^{-1}$]
Acceleration	Velocity /time	[LT^{-1}]/[T]	[$\mathrm{M}^{0} \mathrm{LT}^{-2}$]
Force	Mass \times acceleration	[M][LT ${ }^{-2}$]	[$\mathrm{M} \mathrm{LT}^{-2}$]
Impulse	Force \times time	[$\mathrm{M} \mathrm{LT}^{-2}$][T]	[$\mathrm{M} \mathrm{LT}^{-1}$]
Work, Energy	Force \times distance	[MLT-2][L]	[$\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}$]
Power	Work/time	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right] /[\mathrm{T}]$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]$
Momentum	Mass \times velocity	[M] [LT^{-1}]	[MLT ${ }^{-1}$]
Pressure, stress	Force/area	[$\left.\mathrm{MLT}^{-2}\right] /\left[\mathrm{L}^{2}\right]$	[$\mathrm{ML}^{-1} \mathrm{~T}^{-2}$]
Strain	$\frac{\text { Change in dimension }}{\text { Original dimension }}$	$[\mathrm{L}] /[\mathrm{L}]$ or $\left[\mathrm{L}^{3}\right] /\left[\mathrm{L}^{3}\right]$	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$]
Surface tension	Force/length	[MLT ${ }^{-2} /[\mathrm{L}]$	[$\mathrm{ML}^{0} \mathrm{~T}^{-2}$]
Modulus of elasticity	Stress/strain	$\frac{\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]}{\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]}$	$\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
Surface energy	Energy/area	[$\left.\mathrm{ML}^{2} \mathrm{~T}^{-2}\right] /\left[\mathrm{L}^{2}\right]$	[$\mathrm{ML}^{0} \mathrm{~T}^{-2}$]
Velocity gradient	Velocity/distance	$\left[\mathrm{LT}^{-1}\right] /[\mathrm{L}]$	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}$]
Pressure gradient	Pressure/distance	$\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right] /[\mathrm{L}]$	[$\mathrm{ML}^{-2} \mathrm{~T}^{-2}$]
Pressure energy	Pressure \times volume	$\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]\left[\mathrm{L}^{3}\right]$	[$\mathrm{ML}^{2} \mathrm{~T}^{-2}$]
Coefficient of viscosity	Force/(area \times velocity gradient)	$\frac{\left[\mathrm{MLT}^{-2}\right]}{\left[\mathrm{L}^{2}\right]\left[\mathrm{LT}^{-1} / \mathrm{L}\right]}$	[$\mathrm{ML}^{-1} \mathrm{~T}^{-1}$]
Angle, Angular displacement	Arc/radius	[L]/[L]	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$]
Trigonometric ratio	Length/length	[L]/[L]	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$]
Angular velocity	Angle/time	[L ${ }^{0} / /[\mathrm{T}]$	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}$]
Angular acceleration	Angular velocity/time	$\left.\left[\mathrm{T}^{-1}\right] / \mathrm{T}\right]$	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-2}$]
Radius of gyration	Distance	[L]	[$\mathrm{M}^{0} \mathrm{LT}{ }^{0}$]
Moment of inertia	Mass \times (radius of gyration) ${ }^{2}$	[M] [L2]	[$\left.\mathrm{ML}^{2} \mathrm{~T}^{0}\right]$
Angular momentum	Moment of inertia \times angular velocity	[ML^{2}] ${ }^{\left(\mathrm{T}^{-1}\right]}$	[$\mathrm{ML}^{2} \mathrm{~T}^{-1}$]
Moment of force (Couple)	Force \times distance	[MLT^{-2}] [L]	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
Torque	Angular momentum/time, Or Force \times distance	$\begin{aligned} & {\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right] /[\mathrm{T}]} \\ & \text { or }\left[\mathrm{MLT}^{-2}\right][\mathrm{L}] \end{aligned}$	[$\mathrm{ML}^{2} \mathrm{~T}^{-2}$]
Angular frequency	$2 \pi \times$ Frequency	${ }^{\left[\mathrm{T}^{-1}\right]}$	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}$]
Wavelength	Distance	[L]	[M0ㄴT0]
Hubble constant	Recession speed/distance	[LT^{-1}]/[L]	[$\left.\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
Intensity of wave	(Energy/time)/area	[$\left.\mathrm{ML}^{2} \mathrm{~T}^{-2} / \mathrm{T}\right] /\left[\mathrm{L}^{2}\right]$	[$\mathrm{ML}^{0} \mathrm{~T}^{-3}$]

Physical quantity	Relationship with other physical quantities	Dimensions	Dimensional formula
Radiation pressure	$\frac{\text { Intensity of wave }}{\text { Speed of light }}$	[$\left.\mathrm{MT}^{-3}{ }^{-3} / \mathrm{LT}^{-1}\right]$	[$\mathrm{ML}^{-1} \mathrm{~T}^{-2}$]
Energy density	Energy/volume	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right] /\left[\mathrm{L}^{3}\right]$	$\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
Critical velocity	$\begin{aligned} & \begin{array}{l} \text { Reynold's number } \\ \times \text { coefficient of viscocity } \end{array} \\ & \hline \text { Mass density } \times \text { radius } \end{aligned}$	$\frac{\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]}{\left[\mathrm{ML}^{-3}\right][\mathrm{L}]}$	[$\mathrm{M}^{0} \mathrm{LT}^{-1}$]
Escape velocity	($2 \times$ acceleration due to gravity \times earth's radius $)^{1 / 2}$	$\left[\mathrm{LT}^{-2}\right]^{1 / 2} \times[\mathrm{L}]^{1 / 2}$	[$\mathrm{M}^{0} \mathrm{LT}^{-1}$]
Heat energy, internal energy	Work (Force \times distance)	[MLT^{-2}] [L]	[$\mathrm{ML}^{2} \mathrm{~T}^{-2}$]
Kinetic energy	(1/2) mass \times (velocity) ${ }^{2}$	[M] [$\mathrm{LT}^{-1]^{2}}$	[$\mathrm{ML}^{2} \mathrm{~T}^{-2}$]
Potential energy	Mass \times acceleration due to gravity \times height	[M] $\left[\mathrm{LT}^{-2}\right][\mathrm{L}]$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
Rotational kinetic energy	$1 / 2 \times$ moment of inertia $\times(\text { angular velocity })^{2}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]\left[\mathrm{ML}^{2}\right] \times\left[\mathrm{T}^{-1}\right]^{2}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right.$]
Efficiency	$\frac{\text { Output work or energy }}{\text { Input work or energy }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}$	[$\mathrm{M}^{\circ} \mathrm{L}^{0} \mathrm{~T}^{0}$]
Angular impulse	Torque \times time	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right][\mathrm{T}]$	[$\mathrm{ML}^{2} \mathrm{~T}^{-1}$]
Gravitational constant	$\frac{\text { Force } \times(\text { distance })^{2}}{\text { mass } \times \text { mass }}$	$\frac{\left[\mathrm{MLT}^{-2}\right]\left[\mathrm{L}^{2}\right]}{[\mathrm{M}][\mathrm{M}]}$	$\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]$
Planck constant	Energy/frequency	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right] /\left[\mathrm{T}^{-1}\right]$	[$\mathrm{ML}^{2} \mathrm{~T}^{-1}$]
Heat capacity, entropy	Heat energy /temperature	$\left.\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right] / \mathrm{K}\right]$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$
Specific heat capacity	Heat Energy $\overline{\text { Mass } \times \text { temperature }}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right] /[\mathrm{M}][\mathrm{K}]$	[$\left.\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$
Latent heat	Heat energy/mass	[$\left.\mathrm{ML}^{2} \mathrm{~T}^{-2}\right] /[\mathrm{M}]$	[$\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2}$]
Thermal expansion coefficient or Thermal expansivity	$\frac{\text { Change in dimension }}{\text { Original dimension } \times \text { temperature }}$	[L]/[L][K]	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~K}^{-1}$]
Thermal conductivity	$\frac{\text { Heat Energy } \times \text { thickness }}{\text { Area } \times \text { temperature } \times \text { time }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right][\mathrm{L}]}{\left.\left[\mathrm{L}^{2}\right][\mathrm{K}] \mathrm{T}\right]}$	[$\mathrm{MLT}^{-3} \mathrm{~K}^{-1}$]
Bulk modulus or (compressibility) ${ }^{-1}$	$\frac{\text { Volume } \times(\text { Change in pressure })}{\text { Change in volume }}$	$\frac{\left[\mathrm{L}^{3}\right]\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]}{\left[\mathrm{L}^{3}\right]}$	[$\mathrm{ML}^{-1} \mathrm{~T}^{-2}$]
Centripetal acceleration	(Velocity) $/$ /radius	$\left[\mathrm{LT}^{-1}\right]^{2} /[\mathrm{L}]$	[$\mathrm{M}^{0} \mathrm{LT}^{-2}$]
Stefan constant	$\frac{(\text { Energy } / \text { area } \times \text { time })}{(\text { Temperature })^{4}}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{L}^{2}\right][\mathrm{T}][\mathrm{K}]^{4}}$	[$\left.\mathrm{ML}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{-4}\right]$
Wien constant	Wavelength \times temperature	[L] [K]	[$\mathrm{M}^{\circ} \mathrm{LT}^{\circ} \mathrm{K}$]
Boltzmann constant	Energy/temperature	[$\left.\left.\mathrm{ML}^{2} \mathrm{~T}^{-2}\right] / \mathrm{K}\right]$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$

Units and Dimensions

Physical quantity	Relationship with other physical quantities	Dimensions	Dimensional formula
Universal gas constant	Pressure \times volume mole \times temperature	$\frac{\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]\left[\mathrm{L}^{3}\right]}{[\mathrm{moll}[\mathrm{~K}]}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right]$
Charge	Current \times time	[A][T]	[$\mathrm{M}^{\circ} \mathrm{L}^{0} \mathrm{TA}$]
Current density	Current/area	[A]/[L²]	[$\mathrm{M}^{0} \mathrm{~L}^{-2} \mathrm{~T}^{0} \mathrm{~A}$]
Voltage, electric potential, electromotive force	Work/charge	[$\left.\mathrm{ML}^{2} \mathrm{~T}^{-2}\right] /[\mathrm{AT}]$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]$
Resistance	Potential difference Current	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]}{[\mathrm{A}]}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$
Capacitance	Charge/potential difference	$\frac{[\mathrm{AT}]}{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]}$	$\left[\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2}\right]$
Electrical resistivity or (electrical conductivity) ${ }^{-1}$	Resistance \times area length	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]\left[\mathrm{L}^{2}\right] /[\mathrm{L}]$	$\left[\mathrm{ML}^{3} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$
Electric field	Electrical force/charge	[MLT^{-2}]/[AT]	[$\mathrm{MLT}^{-3} \mathrm{~A}^{-1}$]
Electric flux	Electric field \times area	[MLT $\left.{ }^{-3} \mathrm{~A}^{-1}\right]\left[\mathrm{L}^{2}\right]$	$\left[\mathrm{ML}^{3} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]$
Electric dipole moment	Torque/electric field	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{MLT}^{-3} \mathrm{~A}^{-1}\right]}$	[M ${ }^{0}$ LTA]
Electric field strength or electric field intensity	$\frac{\text { Potential difference }}{\text { distance }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]}{[\mathrm{L}]}$	$\left[\mathrm{MLT}^{-3} \mathrm{~A}^{-1}\right]$
Magnetic field, magnetic flux density, magnetic induction	$\frac{\text { Force }}{\text { Current } \times \text { length }}$	[MLT-2]/[A][L]	$\left[\mathrm{ML}^{0} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]$
Magnetic flux	Magnetic field \times area	[$\left.\mathrm{MT}^{-2} \mathrm{~A}^{-1}\right]\left[\mathrm{L}^{2}\right]$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]$
Inductance	$\frac{\text { Magnetic flux }}{\text { Current }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]}{[\mathrm{A}]}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$
Magnetic dipole moment	Torque/magnetic field or current \times area	$\begin{aligned} & {\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right] /\left[\mathrm{MT}^{-2} \mathrm{~A}^{-1}\right]} \\ & \quad \text { or }[\mathrm{A}]\left[\mathrm{L}^{2}\right] \end{aligned}$	[$\mathrm{M}^{0} L^{2} \mathrm{~T}^{0} \mathrm{~A}$]
Magnetic field strength, magnetic intensity or magnetic moment density	Magnetic moment Volume	$\frac{\left[\mathrm{L}^{2} \mathrm{~A}\right]}{\left[\mathrm{L}^{3}\right]}$	[$\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0} \mathrm{~A}$]
Permittivity constant (of free space)	$\frac{\text { Charge } \times \text { charge }}{4 \pi \times \text { electricforce } \times(\text { distance })^{2}}$	$\frac{[\mathrm{AT}][\mathrm{AT}]}{\left[\mathrm{MLT}^{-2}\right][\mathrm{L}]^{2}}$	$\left[\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{4} \mathrm{~A}^{2}\right]$
Permeability constant (of free space)	$\frac{2 \pi \times \text { force } \times \text { distance }}{\text { current } \times \text { current } \times \text { length }}$	$\frac{\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]\left[\mathrm{MLT}^{-2}\right][\mathrm{L}]}{[\mathrm{A}][\mathrm{A}][\mathrm{L}]}$	$\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]$
Refractive index	Speed of light in vacuum Speed of light in medium	$\left[\mathrm{LT}^{-1}\right] /\left[\mathrm{LT}^{-1}\right]$	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$]
Faraday constant	Avogadro constant \times elementary charge	[AT]/[mol]	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{TA} \mathrm{mol}^{-1}$)

Units and Dimensions

Physical quantity	Relationship with other physical quantities	Dimensions	Dimensional formula
Wave number	$2 \pi /$ wavelength	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0} \mathrm{l} / \mathrm{L}\right.$]	[$\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0}$]
Radiant flux, Radiant power	Energy emitted/time	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right] /[\mathrm{T}]$	[$\mathrm{ML}^{2} \mathrm{~T}^{-3}$]
Luminosity of radiant flux or radiant intensity	Radiant power or radiant flux of source Solid angle	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right] /\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$	[$\mathrm{ML}^{2} \mathrm{~T}^{-3}$]
Luminous power or luminous flux of source	$\frac{\text { Luminous energy emitted }}{\text { time }}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right] /[\mathrm{T}]$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]$
Luminous intensity or illuminating power of source	$\frac{\text { Luminous flux }}{\text { Soild angle }}$	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]}{\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]}$	[$\mathrm{ML}^{2} \mathrm{~T}^{-3}$]
Intensity of illumination or luminance	$\frac{\text { Liminous intensity }}{\left(\text { distance) }^{2}\right.}$	[$\left.\mathrm{ML}^{2} \mathrm{~T}^{-3}\right] /\left[\mathrm{L}^{2}\right]$	$\left[\mathrm{ML}^{0} \mathrm{~T}^{-3}\right]$
Relative luminosity	Luminous flux of a source of given wavelength and intensity luminous flux of peak sensitivity wavelength (555 nm) source of same power	$\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]}{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]}$	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$]
Luminous efficiency	Total luminous flux Total radiant flux	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right] /\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]$	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$]
Illuminance or illumination	$\frac{\text { Luminous flux incident }}{\text { area }}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right] /\left[\mathrm{L}^{2}\right]$	[$\mathrm{ML}^{0} \mathrm{~T}^{-3}$]
Mass defect	(sum of masses of nucleons)(mass of the nucleus)	[M]	[$\mathrm{ML}^{0}{ }^{\text {T }}$]
Binding energy of nucleus	Mass defect \times (speed of light in vacuum $)^{2}$	$[\mathrm{M}]\left[\mathrm{LT}^{-1}\right]^{2}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
Decay constant	0.693/half life	[T^{-1}]	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}$]
Resonant frequency	(Inductance \times capacitance) ${ }^{-1 / 2}$	$\left[M L^{2} T^{-2} A^{-2}\right]^{\frac{1}{2}}\left[M^{-1} L^{-2} T^{4} A^{2}\right]^{\frac{-1}{2}}$	[$\left.\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~A}^{0} \mathrm{~T}^{-1}\right]$
Quality factor or Q- factor of coil	$\frac{\text { Resonant frequency } \times \text { inducatance }}{\text { Resistance }}$	$\frac{\left.\left[\mathrm{T}^{-1}\right] \mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]}{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]}$	[$\left.\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
Power of lens	(Focal length) ${ }^{-1}$	$\left[\mathrm{L}^{-1}\right]$	[$\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0}$]
Magnification	Image distance Object distance	[L]/[L]	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$]
Fluid flow rate	$\frac{(\pi / 8)(\text { pressure }) \times(\text { radius })^{4}}{(\text { viscosity coefficient) } \times \text { length }}$	$\frac{\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]\left[\mathrm{L}^{4}\right]}{\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right][\mathrm{L}]}$	$\left[\mathrm{M}^{0} \mathrm{~L}^{3} \mathrm{~T}^{-1}\right]$
Capacitive reactance	(Angular frequency x (apacitance) ${ }^{-1}$	$\left[\mathrm{T}^{-1}\right]^{-1}\left[\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2}\right]^{-1}$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$
Inductive reactance	(Angular frequency \times inductance)	$\left[\mathrm{T}^{-1}\right]\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]$

Units and Dimensions

SOME IMPORTANT CONVERSION FACTORS

LENGTH

- $1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}=3.28 \mathrm{ft} . \quad=39.37 \mathrm{in}=1.0936 \mathrm{yd}$ (yard)
- $\quad 1 \mathrm{~km}=0.6215 \mathrm{mi}$ (mile)
- $\quad 1 \mathrm{mi}=1609 \mathrm{~m}$
- $\quad 1 \mathrm{n}$ mi (nautical mile $)=1852 \mathrm{~m}$
- $1 \mathrm{in}=2.54 \mathrm{~cm}$
- $1 \mathrm{ft}=12 \mathrm{in}=30.48 \mathrm{~cm}$.
- 1 bohr radius $=0.529 \AA$
- $\quad 1 \mathrm{AU}$ (Astronomical unit) $=1.49 \times 10^{11} \mathrm{~m}$ (Average distance between sun and earth)
- $\quad 1 \mathrm{ly}$ (light year) $=9.461 \times 10^{15} \mathrm{~m}$ (Distance travelled by light in vacuum in one year)
- 1 parsec or parallactic second $=3.08 \times 10^{16} \mathrm{~m}=3.26 \mathrm{ly}$ (Distance at which an arc of length 1 AU subtends an angle of one second at a point)

MASS

- $\quad 1 \mathrm{~kg}$
$=1000 \mathrm{~g}=2.2 \mathrm{lb}$ (pound)
- 1 quintal
$=100 \mathrm{~kg}$
- 1 ton
- 1 metric tonne
- $\quad 1 \mathrm{lb}$
- 1 slug
- 1 ounce
- 1 amu
- 1 Chandra Shekhar Limit $=1.4 \mathrm{M}$

TIME

- $1 \mathrm{~h}=60 \mathrm{~min}=3600 \mathrm{~s}$
- $1 \mathrm{~d}=24 \mathrm{~h}=1440 \mathrm{~min}=86.4 \times 10^{3} \mathrm{~s}$
- $1 \mathrm{y}=365.24 \mathrm{~d}=31.56 \times 10^{6} \mathrm{~s}$
- $\quad 1$ shake $=10^{-8} \mathrm{~s}$
- $\quad 1 \mathrm{~m}^{2}$
$=10^{4} \mathrm{~cm}^{2}$
- $\quad 1 \mathrm{~km}^{2}$
$=0.386 \mathrm{mi}^{2}=247$ acres
- 1 acre $=43,560 \mathrm{ft}^{2}=4047 \mathrm{~m}^{2}=0.4047$ hectare
- 1 hectare $\quad=10^{4} \mathrm{~m}^{2}=2.47$ acres
- 1 barn
$=10^{-28} \mathrm{~m}^{2}$ (for measuring cross-sectional areas in sub-atomic particle collisions)

VOLUME

- $1 \mathrm{~m}^{3} \quad=10^{6} \mathrm{~cm}^{3}=10^{6} \mathrm{cc}=10^{3} \mathrm{~L}=35.31 \mathrm{ft}^{3}$
- 1 gal (gallon) $=3.786 \mathrm{~L}$ (in U.S.A.) or 4.54 L (in U.K.)

DENSITY

- $1 \mathrm{~kg} / \mathrm{m}^{3} \quad=10^{-3} \mathrm{~g} / \mathrm{cm}^{3}=10^{-3} \mathrm{~kg} / \mathrm{L}$

SPEED

- $\quad 1 \mathrm{~km} \mathrm{~h}^{-1}$
- $1 \mathrm{mi} \mathrm{h}^{-1}$
- $\quad 1 \mathrm{~m} \mathrm{~s}^{-1}$
$=5 / 18 \mathrm{~m} / \mathrm{s}$
$=0.4470 \mathrm{~m} / \mathrm{s}$
$=18 / 5 \mathrm{~km} / \mathrm{h}$
or $\quad 0.2778 \mathrm{~m} / \mathrm{s}$
$=0.6215 \mathrm{mi} / \mathrm{h}$
$=1.609 \mathrm{~km} / \mathrm{h}$
or $\quad 3.6 \mathrm{~km} / \mathrm{h}$
$=1.467 \mathrm{ft} / \mathrm{s}$
$=2.24 \mathrm{mi} / \mathrm{h}$

ACCELARATION

- $\quad \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}($ MKS unit $)=980 \mathrm{~cm} / \mathrm{s}^{2}($ CGS unit $)=32 \mathrm{ft} / \mathrm{s}^{2}($ FPS unit $)$

ANGLE AND ANGULAR SPEED

- $\quad \pi \mathrm{rad}$
$=180^{\circ}$
- 1 rad
$=180^{\circ} / \pi$ or 57.30°
- $1^{0} \quad=1.745 \times 10^{-2} \mathrm{rad}=60^{\prime}=1 / 360$ revolution
- $1 \mathrm{rev} \quad=360^{\circ}=2 \pi \mathrm{rad}$
- $1^{\prime}(\mathrm{min}) \quad=60^{\prime \prime}$ (second)
- $1 \mathrm{rev} / \mathrm{min} \quad=0.1047 \mathrm{rad} / \mathrm{s} \approx 0.1 \mathrm{rad} / \mathrm{s}$
- $1 \mathrm{rad} / \mathrm{s}=9.549 \mathrm{rev} / \mathrm{min}$

FORCE

- $\quad 1 \mathrm{~N}=10^{5}$ dyne $=7.23$ poundal
- $\quad 1 \mathrm{~kg}-\mathrm{wt}=1 \mathrm{~kg}-\mathrm{f}=9.8 \mathrm{~N}$
- $\quad 1 \mathrm{~g}-\mathrm{wt}=1 \mathrm{~g}-\mathrm{f}=980$ dyne
- $\quad 1 \mathrm{lb}-\mathrm{wt}=1 \mathrm{lb}-\mathrm{f}=32$ poundal

PRESSURE

- $\quad 1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}=10$ dyne $/ \mathrm{cm}^{2}$
- 1 bar $=10^{5} \mathrm{~Pa}=10^{6}$ dyne $/ \mathrm{cm}^{2}$
- $1 \mathrm{~atm}=1.01325 \mathrm{bar}=1.01 \times 10^{5} \mathrm{~Pa}=1.01 \times 10^{6}$ dyne $/ \mathrm{cm}^{2}=760 \mathrm{~mm}$ of Hg column
- 1 torr $=1 \mathrm{~mm}$ of Hg column $=153.32 \mathrm{~Pa}$

WORK ENERGY

- $\quad 1 \mathrm{~J}=10^{7} \mathrm{erg}=0.239 \mathrm{cal}$
- $\quad 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
- $\quad 1 \mathrm{amu}=931 \mathrm{MeV}=1.492 \times 10^{-10} \mathrm{~J}$
- $\quad 1 \mathrm{cal}=4.186 \mathrm{~J}$
$1 \mathrm{kWh}=3.6 \mathrm{MJ}=860 \mathrm{kcal}$

POWER

- $\quad 1 \mathrm{hp}$ (horse power) $=745.7 \mathrm{~W} \approx 746 \mathrm{~W}$
- $\quad 1 \mathrm{~W}$ (watt) $=1 \mathrm{~J} / \mathrm{s}$
- $\quad 1 \mathrm{~kW}=1000 \mathrm{~W}=1.34 \mathrm{hp}$
- $\quad 1 \mathrm{cal} / \mathrm{s}=4.186 \mathrm{~W}$

TEMPERATURE

- K (kelvin) $=\left[{ }^{\circ} \mathrm{C}+273^{\circ}\right]=\left[{ }^{\circ} \mathrm{F}+459.67\right] / 1.8={ }^{\circ} \mathrm{R} / 1.8 \quad \bullet{ }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C} \times 9 / 5+32$

ELECTRIC CHARGE

- $\quad 1 \mathrm{C}$ (coulomb) $=3 \times 10^{9}$ stat coulomb $=0.1 \mathrm{ab}$ coulomb
- 1 esu $=1$ stat coulomb $=3.33 \times 10^{-10}$ coulomb
- $\quad 1 \mathrm{emu}=1 \mathrm{ab}$ coulomb $=10$ coulomb
- $\quad 1 \mathrm{~A}-\mathrm{h}=3600 \mathrm{C}$ (coulomb)

ELECTRIC CURRENT

- $\quad 1 \mathrm{~A}$ (ampere) $=3 \times 10^{9}$ stat ampere (esu of current) $=0.1 \mathrm{ab}$ ampere (emu of current)

RADIOACTIVITY

- $\quad 1 \mathrm{~Bq}$ (bacquerel) $=1 \mathrm{dps}$ (disintegration per second)
- $\quad 1 \mathrm{Ci}$ (curie) $=3.7 \times 10^{10} \mathrm{dps}=3.7 \times 10^{10} \mathrm{~Bq}=3.7 \times 10^{4} \mathrm{Rd}$
- $\quad 1 \mathrm{Rd}$ (rutherford) $=10^{6} \mathrm{dps}=10^{6} \mathrm{~Bq}$

OTHERS

- 1 weber $=10^{8}$ maxwell (for Magnetic flux)
- 1 T (tesla) $=1$ weber $/ \mathrm{m}^{2}=10^{4} \mathrm{G}$ (gauss) (for Magnetic flux density)
- 1 orested $=79.554 \mathrm{~A} / \mathrm{m}$ (for Intensity of Magnetic field)
- 1 poiseuille ($\mathrm{N}-\mathrm{s} / \mathrm{m}^{2}$ or Pa-s) $=10$ poise (Dyne-s $/ \mathrm{cm}^{2}$) (for Viscosity)

Units and Dimensions

SETS OF QUANTITIES HAVING SAME DIMENSIONS

S.No.	Quantities	Dimensions
1.	Strain, refractive index, relative density, angle, solid angle, phase, distance gradient, relative permeability, relative permittivity, angle of contact, Reynolds number, coefficient of friction, mechanical equivalent of heat, electric susceptibility, etc.	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$]
2.	Mass	[$\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{0}$]
3.	Momentum and impulse.	[$\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}$]
4.	Thrust, force, weight, tension, energy gradient.	[$\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}$]
5.	Pressure, stress, Young's modulus, bulk modulus, shear modulus, modulus of rigidity, energy density.	[$\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}$]
6.	Angular momentum and Planck's constant (h).	[$\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}$]
7.	Acceleration, g and gravitational field intensity.	[$\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-2}$]
8.	Surface tension, free surface energy (energy per unit area), force gradient, spring constant.	[$\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}$]
9.	Latent heat and gravitational potential.	[$\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2}$]
10.	Thermal capacity, Boltzmann constant, entropy.	[$\left.\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$
11.	Work, torque, internal energy, potential energy, kinetic energy, moment of force, $\left(\mathrm{q}^{2} / \mathrm{C}\right),\left(\mathrm{LI}^{2}\right),(\mathrm{qV}),\left(\mathrm{V}^{2} \mathrm{C}\right),\left(\mathrm{I}^{2} \mathrm{rt}\right),\left(\frac{\mathrm{V}^{2}}{\mathrm{r}} \mathrm{t}\right),(\mathrm{VIt}),(\mathrm{RT})$ $\mathrm{q} \rightarrow$ charge, $\mathrm{C} \rightarrow$ capacitance, $\mathrm{L} \rightarrow$ inductance, $\mathrm{V} \rightarrow$ potential, $\mathrm{r} \rightarrow$ resistance, $\mathrm{I} \rightarrow$ current $\mathrm{T} \rightarrow$ temperature, $\mathrm{t} \rightarrow$ time, $\mathrm{R} \rightarrow$ gas constant	$\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$
12.	Frequency, angular frequency, angular velocity, velocity gradient, radioactivity of a sample, $\left(\frac{\mathrm{R}}{\mathrm{L}}\right),\left(\frac{1}{\mathrm{RC}}\right),\left(\frac{1}{\sqrt{\mathrm{LC}}}\right)$. $\mathrm{L} \rightarrow$ inductance, $\mathrm{R} \rightarrow$ resistance, $\mathrm{C} \rightarrow$ capacitance	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
13.	$\left(\frac{\ell}{\mathrm{g}}\right)^{1 / 2},\left(\frac{\mathrm{~m}}{\mathrm{k}}\right)^{1 / 2},\left(\frac{\mathrm{~L}}{\mathrm{R}}\right),(\mathrm{RC}),(\sqrt{\mathrm{LC}})$, time $\ell \rightarrow$ length, $\mathrm{g} \rightarrow$ gravitational acceleration, $\mathrm{k} \rightarrow$ spring constant	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1}$]
14.	(VI), ($\left.\mathrm{I}^{2} \mathrm{r}\right),\left(\mathrm{V}^{2} / \mathrm{r}\right)$, Power ($\mathrm{r}=$ resistance $)$	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]$

Units and Dimensions

NUMERICAL CONSTANTS

Units and Dimensions

SI Base Quantities and Units

Base Quantity	SI Units		
	Name	Symbol	Definition
Length	meter	m	The meter is the length of the path traveled by light in vacuum during a time interval of $1 /(299,792,458)$ of a second (1983)
Mass	kilogram	kg	The kilogram is equal to the mass of the international prototype of the kilogram (a platinum-iridium alloy cylinder) kept at International Bureau of Weights and Measures, at Sevres, near Paris, France. (1889)
Time	second	s	The second is the duration of $9,192,631,770$ periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium-133 atom (1967)
Electric Current	ampere	A	The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} Newton per metre of length. (1948)
Thermodynamic Temperature	kelvin		The kelvin, is the fraction $1 / 273.16$ of the thermodynamic temperature of the triple point of water. (1967)
Amount of Substance	mole	mol	The mole is the amount of substance of a system, which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon-12. (1971)
Luminous Intensity	candela		The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} hertz and that has a radiant intensity in that direction of $1 / 683$ watt per steradian (1979).

Note :- On November 16, 2018 at the General Conference on Weights and Measure (GCWM) the 130 years old definition of kilogram was changed forever. It will now defined in terms of plank's constant. It will adopted on 20 May, 2019 (World Metrology Day - 20 May). The new definition of kg involves accurate weighing machine called "Kibble balance".

IMPORTANT NOTES

