QUICK REVISION

12th Mathematics All Chapterwise Formulas

For Chemistry and Physics

Visit: www.saiphy.com

MATHEMATICS BASIC FORMULAE

Co-ORDINATE GEOMETRY

- (1) To change from cartesian coordinates to polar coordinates for x write $r \cos \theta$ and for y write $r \sin \theta$.
- (2) To change from polar coordinates to cartesian coordinates, for r^2 write $x^2 + y^2$; for $r \cos \theta$ write $x \sin \theta$. write $y \sin \theta$ and for $\tan \theta$ write $\frac{y}{x}$.
- (3) Distance between two points (x_1, y_1) and (x_2, y_2) is : $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- (4) Distance of points (x_1, y_1) from the origin is $(x_1^2 + y_1^2)$
- (5) Distance between (r_1, θ_1) and (r_2, θ_2) is: $\sqrt{r_1^2 + r_2^2 2r_1r_2} \cos \theta_2 \theta_1$
- (6) Coordinates of the point which divides the line joining (x_1, y_1) and (x_2, y_2) internally in the ratio $m_1 : m_2$ are :

$$\left\{ \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2} \middle| \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2} \right\}, (m_1 - m_2 \neq 0)$$

- (7) Coordinates of the point which divides the line joining (x_1, y_1) and (x_2, y_2) externally in the ratio $m_1 : m_2$ are : $\left\{ \frac{m_1 x_2 m_2 x_1}{m_1 m_2} \middle| \frac{m_1 y_2 m_2 y_2}{m_2 m_2} \right\}, (m_1 m_2 \neq 0)$
- (8) Coordinates of the mid-point (point which bisects) of the seg. joining (x_1, y_1) and (x_2, y_2) are : $\left[\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right]$
- (9) (a) Centriod is the point of intersection of the medians of triangle.
 - (b) In-centre is the point of intersection of the bisectors of the angles of the triangle.
 - (c) Circumcentre is the point of intersection of the right (perpendicular) bisectors of the sides of a triangle.
 - (d) Orthocentre is the point of intersection of the altitudes (perpendicular drawn from the vertex on the opposites) of a triangle.

(10) Coordinates of the centroid of the triangle whose vertices are (x_1, y_1)

$$(x_2, y_2)$$
; and (x_3, y_3) are : $\left\{\frac{x_1 + x_2 + x_3}{3} \middle| \frac{y_1 + y_2 + y_3}{3} \right\}$

(11) Coordinates of the in-centre of the triangle whose vertices are A (x_1,y_1) ; B (x_2, y_2) ; C (x_3, y_3) and l (BC) = a, l (CA) = b, l (AB) = c.

are
$$\left\{ \frac{ax_1 + bx_2 + cx_3}{a+b+c} \middle| \frac{ay_1 + by_2 + cy_3}{a+b+c} \right\}$$

(12) Slope of line joining two points (x_1, y_1) and (x_2, y_2) is

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

- Slope of a line is the tangent ratio of the angle which the line makes with the positive direction of the X-axis i.e. $m = \tan \theta$.
- (14) Slope of the perpendicular to X-axis (parallel to Y-axis) does not exist, and the slope of line parallel to X-axis is zero.
- 15) Intercepts: If a line cuts the X-axis at A and y-axis at B then OA is called intercept on X-axis and denoted by "a" and OB is called intercept on Y-axis and denoted by "b".
- (16) x = a is equation of line parallel to Y-axis and passing through (a, b) and y = b is equation of the line parallel to X-axis and passing through (a, b).
- (17) x = 0 is the equation of Y axis and y = 0 is the equation of X axis.
- (18) y = mx is the equation of the line through the origin and whose slope is m.
- (19) y = mx + c is the equation of line in slope intercept form.
- (20) $\frac{x}{a} + \frac{y}{b} = 1$ is the equation of line in the **Double intercepts** form, where "a" is x intercept and "b" is y- intercept.
- (21) x cos α + y sin α = p is the equation of line in normal form, where "p" is the length of perpendicular from the origin on the line and α is the angle which the perpendicular (normal) makes with the positive direction of X-axis.
- (22) $y y_1 = m(x x_1)$ is the slope point from of line which passes through (x_1, y_1) and whose slope is m.
- (23) Two point form: $y y_1 = \frac{y_2 y_1}{x_2 x_1} (x x_1)$ is the equation of line which passes through the points (x_1, y_1) and (x_1, y_2) .

- (24) Parametric form: $\frac{x-x_1}{\cos \theta} = \frac{y-y_1}{\sin \theta} = r$ is the equation of line which passes through the point (x_1, y_1) makes angle θ with the axis and r is the distance of any point (x, y) from (x_1, y_1) .
- (25) Every first degree equation in x and y always represents a straight line ax + by + c = 0 is the general equation of line whose,
 - (a) Slope = $-\frac{a}{b} = \left[\frac{\text{coefficient of } x}{\text{confficient of } y} \right]$
 - (b) X intercept = $-\frac{c}{a}$
 - (c) Y intercept = $-\frac{c}{b}$
- (26) Length of the perpendicular from (x_1, y_1) on the line ax + by + c = is:

$$\left[\frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}\right]$$

- (27) To find the coordinates of point of intersection of two curves or two line, solve their equation simultaneously.
- (28) The equation of any line through the point of intersection of two given lines is

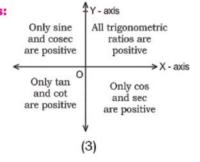
(L.H.S of one line) + K (L.H.S. of 2nd line) = 0

(Right Hand side of both lines being zero)

2.

TRIGONOMETRY

- (1) $\sin^2 \theta + \cos^2 \theta = 1$; $\sin^2 \theta = 1 \cos^2 \theta$, $\cos^2 \theta = 1 \sin^2 \theta$,
- (2) $\tan \theta = \frac{\sin \theta}{\cos \theta}$; $\cos \theta = \frac{\cos \theta}{\sin \theta}$; $\sec \theta = \frac{1}{\cos \theta}$; $\csc \theta = \frac{1}{\sin \theta}$; $\cot \theta = \frac{1}{\tan \theta}$
- (3) $1 + \tan^2 \theta = \sec^2 \theta$; $\tan^2 \theta = \sec^2 \theta 1$; $\sec^2 \theta \tan^2 \theta = 1$.
- (4) $1 + \cot^2 \theta = \csc^2 \theta$; $\cot^2 \theta = \csc^2 \theta 1$; $\csc^2 \theta \cot^2 \theta = 1$.
- (5) Sign conventions:



(6)

Angle Ratio	0°	$\frac{30^{\circ}}{\left(\frac{\pi}{6}\right)^{c}}$	45° $\left(\frac{\pi}{4}\right)^{c}$	$\frac{60^{\circ}}{\left(\frac{\pi}{3}\right)^{c}}$	90° $\left(\frac{\pi}{2}\right)^{c}$	120° $\left(\frac{2\pi}{3}\right)$	135° $\left(\frac{3\pi}{4}\right)^{c}$	150° $\left(\frac{5\pi}{6}\right)^{c}$	180° π°
sin	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0
cos	1	$\sqrt{\frac{3}{2}}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$\frac{-1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1
tan	0	$\frac{2}{\sqrt{3}}$	1	√3	ø	-√3	-1	$-\frac{1}{\sqrt{3}}$	0

(7) $\sin(-\theta) = \sin\theta$; $\cos(-\theta) = \cos\theta$; $\tan(-\theta) = -\tan\theta$.

(8)

$\sin (90 - \theta) = \cos \theta$	$\sin (90 + \theta) = \cot \theta$	$\sin (180 - \theta) = \sin \theta$
$\cot (90 - \theta) = \sin \theta$	$\cos (90 + \theta) = -\sin \theta$	$\cos (180 - \theta) = -\cos \theta$
$\tan (90 - \theta) = \cot \theta$	$\tan (90 + \theta) = -\cot \theta$	$\tan (180 - \theta) = -\tan \theta$
$\cot (90 - \theta) = \tan \theta$	$\cot (90 + \theta) = -\tan \theta$	$\cot (180 - \theta) = \cot \theta$
$sec (90 - \theta) = cosec \theta$	$set (90 + \theta) = - cosec \theta$	sec (180 – θ)= – sec θ
$\csc (90 - \theta) = \sec \theta$	$\csc (90 + \theta) = \sec \theta$	$cosec (180 - \theta) = cosec \theta$

$$\sin (A - B) = \cos A \sin B - \sin A \cos B$$

$$\cos (A + B) = \cos A \cos B - \sin A \sin B$$

$$cos(A - B) = cosA cosB + sinA sinB$$

$$\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

(10)
$$\tan \left[\frac{\pi}{4} - A \right] = \frac{1 - \tan A}{1 + \tan A}; \tan \left[\frac{\pi}{4} + A \right] = \frac{1 + \tan A}{1 - \tan A}$$

(11)
$$\sin C + \sin D = 2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$$

$$\sin C - \sin D = 2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$$

(4)

$$\cos C + \cos D = 2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$$

$$\cos C - \cos D = 2 \sin \left(\frac{C+D}{2}\right) \sin \left(\frac{D-C}{2}\right)$$

(12)
$$2 \sin A \cos B = \sin (A + B) + \sin (A - B)$$

$$2\cos A\sin B = \sin (A + B) - \sin (A - B)$$

$$2\cos A\cos B = \cos (A + B) + \cos (A + B)$$

$$2 \sin A \sin B = \cos (A - B) - \cos (A + B)$$

(13)
$$\cos (A + B) \cos (A - B) = \cos^2 A - \sin^2 B$$

 $\sin (A + B) \sin (A - B) = \sin^2 A - \sin^2 B$

(14)
$$\sin 2\theta = 2 \sin \theta \cos \theta = \frac{2 \tan \theta}{1 + \tan^2 \theta}$$

(15)
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2 \cos^2 \theta - 1 = 1 - 2 \sin^2 \theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$

(16)
$$1 + \cos 2\theta = 2 \cos^2 \theta$$
; $1 - \cos 2\theta = 2 \sin^2 \theta$.

(17)
$$\tan 2 \theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$
;

(18)
$$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$$
; $\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta$; $\tan 3\theta = \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}$

(19)
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

(20)
$$\cos A = \frac{b^2 + c^2 - a^2}{2 bc}$$
; $\cos B = \frac{c^2 + a^2 - b^2}{2 ca}$; $\cos C = \frac{a^2 + b^2 - c^2}{2 ab}$

(21)
$$a = b \cos C + c \cos B$$
; $b = c \cos A + a \cos C$; $c = a \cos B + b \cos A$

(22) Area of triangle =
$$\frac{1}{2}$$
 bc sin A = $\frac{1}{2}$ ca sin B = $\frac{1}{2}$ ab sin C

(23)
$$1 \pm \sin A = (\cos \frac{A}{2} \pm \sin \frac{A}{2})^2$$

(24)
$$\sec A \pm \tan A = \tan \left(\frac{\pi}{4} \pm \frac{A}{2}\right)$$

(25)
$$\operatorname{cosec} A - \operatorname{cot} A = \tan \frac{A}{2}$$

(26)
$$\operatorname{cosec} A + \operatorname{cot} A = \operatorname{cot} \frac{A}{2}$$

PAIR OF LINES

- (1) A homogeneous equation is that equation in which sum of the powers of x and u is the the same in each term.
- If m₁ and m₂ be the slopes of the lines represented by

$$ax^2 + 2hxy + by^2 = 0$$
, then

$$m_1 + m_2 + -\frac{2h}{b} = -\left(\frac{\text{coefficien of } xy}{\text{coefficient of } y^2}\right)$$

and
$$m_1 + m_2 = \frac{a}{b} = \left(\frac{\text{coefficien of } x^2}{\text{coefficient of } y^2}\right)$$

(3) If θ be the acute angle between the lines represented by $ax^2 + 2hxy + bu^2 = 0$, then,

$$\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$$

These lines will be co-incident (parallel) if $h^2 = ab$ and perpendicular if a + b = 0.

(4) The condition that the general equation of the second degree viz $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 \text{ may represent a pair of straight line}$ is $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$

i.e.
$$\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$$

- (5) $ax^2 + 2hxy + by^2 = 0$ and $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ are pairs of parallel lines.
- (6) The point of intersection of lines $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ is obtained by solving the equation ax + hy + g = 0 and hx + by + f = 0
- (7) Joint equation of two lines can be obtained by multiplying the two equations of lines and equating to zero (uv = 0, where u = 0, v = 0).
- (8) If the origin is changed to (h,k) and the axis remain parallel to the original axis then for x and y put x' + h and y' + k respectively.

4. CIRCLE

- (1) $x^2 + y^2 = a^2$ is the equation of circle whose center is (0,0) and radius is a.
- (2) $(x-h)^2 + (y-k)^2 = a^2$ is the equation of a circle whose centre is (h, k) and radius is a.
- (3) $x^2 + y^2 + 2gx + 2fy + c = 0$ is a general equation of circle, its centre is (-q, -f) and radius is $\sqrt{g^2 + f^2 c}$
- (4) **Diameter form:** $(x x_1)(x x_2) + (y y_1)(y y_2) = 0$ is the equation of a circle whose, (x_1, y_1) and (x_2, y_2) are ends of diameter.
- (5) Conditions for an equation to represent a circle are:
 - (a) Equation of the circle is of the second degree in x and y.
 - (b) The coefficient of x^2 and y^2 must be equal.
 - (c) There is no xy term in the equation (coefficient of xy must be zero).
- (6) To find the equation of the tangent at (x_1, y_1) on any curve rule is: In the given equation of the curve for x^2 put xx_1 ; for y^2 put yy_1 ; for 2x put $x + x_1$ and for 2y put $y + y_2$
- (7) For the equation of tangent from a point outside the circle or given slope or parallel to a given line or perpendicular to a given line use y = mx + c or $y y_1 = m(x x_1)$.
- (8) For the circle $x^2 + y^2 = a^2$
 - (a) Equation of tangle at (x_1, y_1) is $xx_1 + yy_1 = a^2$
 - (b) Equation of tangent at $(a \cos \theta, a \sin \theta)$ is $x \cos \theta + y \sin \theta = a$.
 - (c) Tangent in terms of slope m is $y = mx \pm a \sqrt{m^2 + 1}$
- (9) For the circle $x^2 + y^2 + 2gx + 2fy + c = 0$
 - (a) Equation of tangent at = (x_1, y_1) is $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$
 - (b) Length of tangent from (x_1, y_1) is $\sqrt{x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c}$
- (10) For the point P (x, y), x is abscissa of P and y is ordinate of P.

PARABOLA

- (1) Distance of any point P on the parabola from the focus S is always equal to perpendicular distance of P from the directrix i.e. SP = PM.
- (2) Parametric equation of parabola $y^2 = 4ax$ is $x = at^2$, y = 2atCoordinates of any point (t) is $(at^2, 2at)$
- (3) Different types of standard parabola:

	Parabola	Focus	Directrix	Latus recturm	Axis of parabola (axis of symmetry)
	$y^2 = 4ax$	(a, 0)	x = -a	4a	y = 0
	$y^2 = -4 ax$	(-a, 0)	x = a	4a	<i>y</i> = 0
=	$x^2 = 4by$	(0, b)	y = -b	4 <i>b</i>	x = 0
	$x^2 = -4by$	(0, -b)	y = b	4 <i>b</i>	x = 0

- (4) For the parabola $y^2 = 4ax$
 - (a) Equation of tangent at (x_1, y_1) is $yy_1 = 2a(x + x_1)$.
 - (b) Parametric equation of tangent at $(at^2, 2at)$ is $yt_1 = x + at_1^2$
 - (c) Tangent in terms of slope m is $y = mx + \frac{a}{m}$ and its point of contact is $(a/m^2, 2a/m)$
 - (d) If P(t,) and Q(t,) are the ends of a focal chord then $t_1t_1 = -1$
 - (e) Focal distance of a point $P(x_1, y_1)$ is $x_1 + a$.

6. ELLIPSE

- (1) Distance of any point on an ellipse from the focus = e (perpendicular distance of the point from the corresponding diectrix) i.e. SP = e PM
- (2) Different types of ellipse:

Ellipse	Focus	Directrix	Latus Rectum	Equation of axis	Ends of L.R
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $(a > b)$	(± ae, 0)	$x = \pm \frac{a}{e}$	2b² a	Major axis $y = 0$ Minor axis, $x = 0$	$ \left(ae, \frac{b^2}{a}\right) \\ \left(ae, \frac{-b^2}{a}\right) $

- (3) Parametric equation of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) is $x = a \cos \theta$ and $y = b \sin \theta$.
- (4) For the ellipse $\frac{x^2}{y^2} + \frac{y^2}{b^2} = 1$, a > b, $b^2 = a^2 (1 e^2)$ and $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a < b, $a^2 = b^2 (1 e^2)$
- (5) For the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b)
 - (a) Equation of tangent at (x_1, y_1) is $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1.$
 - (b) Equation of tangent in terms of its slope m is $y = mx \pm \sqrt{a^2m^2 + b^2}$
 - (c) Tangent at $(a \cos \theta, b \sin \theta)$ is $\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1$
- (6) Focal distance of a point P (x_1, y_1) is SP = $|a ex_1|$ and SP = $|ex_1 + a|$

HYPERBOLA

- (1) Distance of a point on the hyperbola from the focus = e (perpendicular distance of the point from the corresponding directrix) i.e. SP = ePM
- (2) Different types of Hyperbola;

Hyperbola	Focus	Directrix	L.R	End of L.R	Eqn of axis
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	(± ae, 0)	$\sqrt{x_1^2 + y_1^2} \cdot$	$\frac{2b^2}{a}$	$(ae, \frac{b^2}{a})$ $(ae, \frac{-b^2}{a})$	Transverse axis $y = 0$, Conjugate axis, $x = 0$
$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$	(0, ± <i>be</i>)	$Y = \pm \frac{b}{e}$	$\frac{2a^2}{b}$	$(\frac{a^2}{b}, \text{ be})$ $(-\frac{a^2}{b}, \text{ be})$	Transverse axis $x = 0$ Conjugate axis $y = 0$

- (3) For the hyperbola $\frac{y^2}{a^2} \frac{y^2}{b^2} = 1$, $b^2 = a^2 (e^2 1)$ and for $\frac{y^2}{b^2} \frac{x^2}{a^2} = 1$, $a^2 = b^2 (e^2 1)$.
- (4) Parametric equations of hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ are $x = a \sec \theta$, $y = b \tan \theta$
- (5) For the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$
 - (a) Equation of tangent at (x_1, y_1) are $\frac{xx_1}{a^2} \frac{yy_1}{b^2} = 1$
 - (b) Equation of tangent in terms of its slope m is $y = mx \pm \sqrt{a^2m^2 b^2}$
 - (c) Equation of tangent at $(a \sec \theta, b \tan \theta)$ is $\frac{x \sec \theta}{a} \frac{y \tan \theta}{b} = 1$
 - (d) Focal distance of P (x_1, y_1) is SP = $|ex_1 a|$ and S'P = $|ex_1 + a|$

SOLID GEOMERY

- (1) Distance between (x_1, y_1, z_1) and (x_2, y_2, z_2) is $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2 + (z_2 z_1)^2}$
- (2) Distance of $(x_1, y_1 z_1)$ from origin $\sqrt{x_1^2 + y_1^2 + z_1^2}$
- (3) Coordinates of point which divides the line joining (x_1, y_1, z_1) and (x_2, y_2, z_2) internally in the ratio m:n are

$$\left[\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}, \frac{mz_2 + nz_1}{m+n}\right], m+n \neq 0$$

(4) Coordinates of point which divides the joint of (x_1, y_1, z_1) and (x_2, y_2, z_2) externally in the ratio m:n are

$$\left[\frac{mx_{2} - nx_{1}}{m - n}, \frac{my_{2} - ny_{1}}{m - n}, \frac{mz_{2} - nz_{1}}{m - n}\right], m - n \neq 0$$

(5) Coordinates of mid point of join of (x_1, y_1, z_1) and (x_2, y_2, z_2) are

$$\left| \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2} \right|$$

(6) Coordinates of centroid of triangle whose vertices are $(x_1, y_1, z_1, (x_2, y_2, z_2))$ and (x_2, y_3, z_3) are

$$\left[\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}, \frac{z_1+z_2+z_3}{3}\right]$$

- (7) Direction cosines of X axis are 1, 0, 0
- (8) Direction cosines of Y axis are 0, 1, 0
- (9) Direction cosines of Z axis are 0, 0, 1
- (10) If OP = r and direction cosines of OP are l, m, n then the coordinates of P are (l r, mr, nr)
- (11) If l, m, n are direction cosines of a line then $l^2 + m^2 + n^2 = 1$
- (12) If l, m, n are direction cosines and, a, b, c are direction ratios of a line then $l = \frac{a}{\pm \sqrt{a^2 + b^2 + c^2}}$, $m = \frac{b}{\pm \sqrt{a^2 + b^2 + c^2}}$, $n = \frac{c}{\pm \sqrt{a^2 + b^2 + c^2}}$

(13) If l, m, n, are direction cosines of a line then a unit vector along the line is $l \ \bar{l} + m\bar{j} + n \ \bar{k}$

(14) If a, b, c are direction ratio of line then a vector along the line is $a\bar{i} + b\bar{i} + c\bar{k}$

9.

VECTORS

- (1) $\bar{a} \cdot \bar{b} = ab \cos \theta = a_1 a_2 + b_1 b_2 + c_1 c_2$
- (2) Projection of \bar{a} on $\bar{b} = \frac{\bar{a} \cdot \bar{b}}{|\bar{b}|}$ and projection of \bar{b} on $\bar{a} = \frac{\bar{a} \cdot \bar{b}}{|\bar{a}|}$
- (3) $\overline{a} \times \overline{b} = ab \sin \hat{\theta}_n = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$ $\overline{a} \times \overline{b} = -(\overline{b} \times \overline{a})$
- (4) $\bar{a} \cdot \bar{b} \times \bar{c} = \left[\bar{a} \ \bar{b} \ \bar{c} \right] = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$
- (5) Vector area of \triangle ABC is $\frac{1}{2}(\overline{AB} \times \overline{AC}) = \frac{1}{2}(\overline{a} \times \overline{b} + \overline{b} \times \overline{c} + \overline{c} \times \overline{a})$ and area of \triangle ABC = $\frac{1}{2}|\overline{AB} \times \overline{AC}|$
- (6) Volume of parallelepiped : $\begin{bmatrix} \bar{a} \ \bar{b} \ \bar{c} \end{bmatrix} = \begin{vmatrix} a_1 \ b_1 \ c_1 \\ a_2 \ b_2 \ c_2 \\ a_3 \ b_3 \ c_3 \end{vmatrix} = |\overline{AB} \ \overline{AC} \ \overline{AD}|$
- (7) Volume of Terahedra ABCD is = $\frac{1}{2} | \overline{AB} | \overline{AC} | \overline{AD}$
- (8) Work done by force \overline{F} in moving a particle from A to B = $\overline{AB} \cdot \overline{F}$
- (9) Moment of force \vec{F} acting at A about a point B is $\vec{M} = \vec{BA} \times \vec{F}$

PROBABILTY

- (1) Probability of an event A is P (A) = $\frac{n(A)}{n(S)}$ $0 \le P(A) \le 1$.
- P (A∪B) = P (A) + P (B) P (A∩B).
 If A and B are mutually exclusive then
 P (A∩B = 0 and P (A∪B) = P (A) + P (B).
- (3) P(A) = 1 P(A')
- (4) $P(A \cap B) = P(A) \cdot P(B/A) = P(B) \cdot P(A/B)$

11.

DIFFERENTIAL CALCULAS

- (1) $f'(x) \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$; where f(x) is derivative of function f(x) wth respective to $x f'(a) = \lim_{h \to 0} \frac{f(a+h) f(a)}{h}$
- (2) $\frac{d}{dx}(a) = 0$, where a is constant; $\frac{d}{dx}(x) = 1$, $\frac{d}{dx}(ax) = a, \frac{d}{dx}(\frac{1}{x}) = \frac{-1}{x^2}; \frac{d}{dx}(\frac{1}{u}) = \frac{-1}{u^2} \times \frac{du}{dx}$ $\frac{d}{dx}(\frac{1}{u^n}) = \frac{-n}{u^n + 1}, \frac{du}{dx}$ $\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}; \frac{d}{dx}\sqrt{u} = \frac{1}{2\sqrt{u}} \times \frac{d}{dx}u, \text{ where } u = f(x)$
- (3) $\frac{d}{dx} \left[x^n \right] = n[x]^{n-1}; \frac{d}{dx} [u^n] = nu^{n-1} \frac{du}{dx}; \frac{dy^n}{dx} = ny^{n-1} \frac{dy}{dx}$
- (4) $\frac{d}{dx} \log x = \frac{1}{x}; \frac{d}{dx} (\log u) = \frac{1}{u} \times \frac{du}{dx}$ $\frac{d}{dx} \log_a x \times \frac{1}{x \log a}; \frac{d}{dx} \log_a u = \frac{1}{u \log a} \times \frac{du}{dx}$
- (5) $\frac{\underline{d}}{dx} [a^x] = a^x \log a; \frac{d}{dx} [a^u] = a^u \log a \times \frac{du}{dx}$
- (6) $\frac{d}{dx}[e^x] = e^x; \frac{d}{dx}[e^u] = e^u \times \frac{du}{dx}$

(13)

- (7) $\frac{d}{dx} [\sin x] = \cos x ; \frac{d}{dx} [\sin u] = \cos u \times \frac{du}{dx}$
- (8) $\frac{d}{dx}[\cos x] = -\sin x$; $\frac{d}{dx}[\cos u] = -\sin u \times \frac{du}{dx}$
- (9) $\frac{d}{dx} \tan x = \sec^2 x$; $\frac{d}{dx} \tan u = \sec^2 u \times \frac{du}{dx}$
- (10) $\frac{d}{dx}\cot x = -\csc^2 x; \quad \frac{d}{dx}\cot u = -\csc^2 u \times \frac{du}{dx}$
- (11) $\frac{d}{dx} \sec x = \sec x \tan x$; $\frac{d}{dx} \sec u = \sec u \times \tan u \times \frac{du}{dx}$
- (12) $\frac{d}{dx}$ cosec x = cosec $x \cot x$;
 - $\frac{d}{dx}\csc u = -\csc u \times \cot u \times \frac{du}{dx}$
- (13) $\frac{d}{dx}\sin^2 x = 2\sin x \times \frac{d}{dx} (\sin x) = 2\sin x \cos x = \sin 2 x$ $\frac{d}{dx}\sin^n x = n\sin^{n-1} x \times \frac{d}{dx} \sin x = n\sin^{n-1} x \cos x.$
- (14) $\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}} \times \frac{d}{dx}(\sin^{-1}u) = \frac{1}{\sqrt{1-u^2}} \times \frac{du}{dx}$
- (15) $\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}}; \frac{d}{dx}(\cos^{-1}u) = \frac{1}{\sqrt{1-u^2}} \times \frac{du}{dx}$
- (16) $\frac{d}{dx} \tan^{-1} x = \frac{-1}{1+x^2}; \frac{d}{dx} (\tan^{-1} u) = \frac{1}{\sqrt{1+u^2}} \times \frac{du}{dx}$
- (17) $\frac{d}{dx} \cot^{-1} x = \frac{-1}{1+x^2}$; $\frac{d}{dx} \cot^{-1} u = \frac{-1}{1+u^2} \times \frac{du}{dx}$
 - (18) $\frac{d}{dx} \sec^{-1} x = \frac{1}{x\sqrt{x^2 1}}; \frac{d}{dx} \sec^{-1} u = \frac{1}{u\sqrt{u^2 1}} \times \frac{du}{dx}$
 - (19) $\frac{d}{dx} \operatorname{cosec}^{-1} x = \frac{-1}{x\sqrt{x^2 1}}; \frac{d}{dx} \operatorname{cosec}^{-1} u = \frac{-1}{u\sqrt{u^2 1}} \times \frac{du}{dx}$
 - (20) $\frac{d}{dx} (uv) = u \frac{dv}{dx} + v \frac{du}{dx}$ $\frac{d}{dx} (uvw) = vw \frac{du}{dx} + uw \frac{dv}{dx} + uv \frac{dw}{dx}$

(21)
$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}, v^{-1}0.$$

(22)
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

(23)
$$f(x+h) = f(x) + h f'(x)$$

(24) Error in
$$y$$
 is $\delta y = \frac{dy}{dx} \times \delta x$,

Relative error in y is $\frac{\delta y}{y}$ and percentage error in $y = \frac{\delta y}{y} \times 100$

(25) Velocity
$$v = \frac{ds}{dt}$$
, acceleration $a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{ds}{dt} \right) = \frac{d^2s}{dt^2}$

INTEGRAL CALCULAS

- (1) $\int (u+v+w+...) dx = \int u dx + \int v dx + \int w dx + ...$
- (2) $\int a f(x) = a \int f(x) dx$, where 'a' is a constant.

(3)
$$\int x^n dx = \frac{x^n + 1}{n + 1} + c, (n \neq -1); \int (ax + b)^n = \frac{1}{n} \frac{(ax + b)^{n+1}}{n+1} + c$$

(4)
$$\int |f(x)|^n f(x) dx = \frac{[f(x)^n + 1]}{n+1} + c, \quad (n \neq -1)$$

(5)
$$\int \frac{1}{x} dx = \log x + c; \int \frac{1}{ax+b} dx = \frac{1}{a} \log[ax+b] + c;$$
$$\int \frac{f'(x)}{f(x)} dx = \log|f(x)| + c;$$

The integral of a function in which the numerator is the differential coefficient of the denominator is log (Denominator).

(6)
$$\int \sqrt{x} dx = \frac{2}{3} x^{3/2} + c$$
; $\int \sqrt{ax+b} dx = \frac{2}{3a} (ax+b)^{3/2} + c$

(7)
$$\int a^x dx = \frac{a^x}{\log a} + c; \int a^{bx+c} dx = \frac{1}{b} \frac{a^{bx+c}}{\log a} + c$$

(8)
$$\int e^x dx \ e^x + c; \int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + c.$$

(15)

9)
$$\int \sin x \, dx = -\cos x + c; \int \sin(ax+b) \, dx = -\frac{1}{a} \cos(ax+b) + c$$

(10)
$$\int \cos x \, dx = \sin x + c; \int \cos (ax + b) \, dx = \frac{1}{a} \sin (ax + b) + c$$

(11)
$$\int \tan x \, dx = \log \sec x + c; \int \tan(ax+b) \, dx = \frac{1}{a} \log \sec(ax+b) + c$$

12)
$$\int \cot x \, dx = \log \sin x + c; \int \cot (ax + b) \, dx = \frac{1}{a} \log \sin (ax + b) + c$$

$$| \mathbf{13} | \int \sec x \, dx = \log |\sec x + \tan x| + c$$

$$= \log \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) + c$$

$$\int \sec (ax + b) \, dx = \frac{1}{a} \log |\sec (ax + b) + \tan (ax + b)| + c$$

$$= \frac{1}{a} \log \tan \left| \frac{ax + b}{2} + \frac{\pi}{4} \right| c$$

$$\int \csc x \, dx = \log | \csc x - \cot x |$$

$$= \log \tan \left(\frac{x}{2} \right) + c$$

$$\int \csc (ax + b) \, dx = \frac{1}{a} \log | \csc (ac + b) - \cot (ax + b) | + c$$

$$= \frac{1}{a} \log \tan \left| \frac{ax + b}{2} \right| + c$$

(15)
$$\int \sec^2 x \, dx = \tan x + c;$$

 $\int \sec^2 (ax+b) \, dx = \frac{1}{a} \tan (ax+b) + c$

(14)

(16)
$$\int \csc^2 x \, dx = -\cot x + c; \int \csc^2 (ax + b) \, dx = \frac{1}{a} \cot (ax + b) + c$$

(17)
$$\int \sec x \tan x \, dx = \sec x + c; \int \sec (ax+b) \tan (ax+b) \, dx = \frac{1}{a} \sec (ax+b) + c$$

(18)
$$\int \csc x \cot x \, dx = -\csc x + c;$$
$$\int \csc (ax+b) \cot (ax+b) \, dx = \frac{1}{a} \csc (ax+b) + c$$

(19)
$$\int \frac{dx}{\sqrt{1+x^2}} = \sin^{-1} x + c = -\cos^{-1} x + c$$

(16)

(20)
$$\int \frac{dx}{1+x^2} = \tan^{-1} x + c = -\cot^{-1} x + c$$

13. NINE IMPORTANT RESULTS

(1)
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \sin^{-1} \frac{x}{a} + c = -\cos^{-1} \left(\frac{x}{a}\right) + c$$

(2)
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \log[x + \sqrt{x^2 + a^2}] + c$$

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left[x + \sqrt{x^2 - a^2} \right] + c$$

(4)
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a} \right) + c$$

(5)
$$\int \sqrt{x^2 + a^2} \ dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + c$$

(6)
$$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a}{2} \log \left[x + \sqrt{x^2 - a^2} \right] + c$$

(7)
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c$$

(8)
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c$$

(9)
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x - a} \right| + c$$

14. INTEGRATION BY SUBSTITUTION

	If the integrand contain	Proper substitution to be used		
(1)	$\sqrt{a^2-x^2}$	$x = a \sin \theta$		
(2)	$\sqrt{x^2+a^2}$	$x = a \tan \theta$		
(3)	$\sqrt{x^2-a^2}$	$x = a \sec \theta$		
(4)	e ^{f(x)}	f(x) = t		
(5)	Any odd power of $\sin x$	$\cos x = t$		
(6)	Any odd power of $\cos x$	$\sin x = t$		
(7)	Odd powers of both $\sin x$ and $\cos x$	Put that function = t which is of the higher power		
(8)	Any even inverse function	Inverse function = t		
(9)	Any power of sec x	$\tan x = t$		
(10)	Any even power of cosec x	$\cot x = t$		
(11)	Function of e ^x	$e^x = t$		
(12)	$\frac{1}{a+b\sin x}, \frac{1}{a+b\cos x},$ $\frac{1}{a+b\cos x+c\sin x}$	$\tan \frac{x}{2} = t \operatorname{then} dx = \frac{2dt}{1+t^2};$ $\sin x = \frac{2t}{1+t^2}; \cos x = \frac{1+t^2}{1+t^2}$		
(13)	$\frac{1}{a+b\sin 2x}, \frac{1}{a+b\cos 2x}$	$\tan x = t$, then $dx = \frac{dt}{1+t^2}$ $\sin 2t = \frac{2t}{1+t^2}$; $\cos 2x = \frac{1-t^2}{1+t^2}$		
(14)	$\frac{1}{a^2\sin^2 x + b^2\cos^2 x}$	Divide numerator and demoninator by $\cos^2 x$ and put $\tan x = t$		
(15)	$\frac{1}{x(px^m+q)}$	$x^m = t$		

(16) Expression containing fractional power of x or (ax + b)

x or $ax + b = t^k$ where k is the L.C.M. of the denominators of the fractional indices.

15.

INTEGRATION BY PARTS

- (1) Integral of the product of two function
 - = Fist function \times Integral of 2^{nd} -

 $\int [\text{Differential coefficient of } 1^{st} \times \text{Integral of } 2^{nd}] dx$

i.e.
$$\int [I \times II] dx = I \times \int II dx - \int \int \frac{d}{dx} I \times \int II dx dx$$

Note:

- (1) The choice of first and second function should be according to the order of the letters of the word LIATE. Where L = Logarithmic; I = inverse; A = Algebric; T = Trignometric; E = Exponential function
- (2) If the integrand is product of same type of function take that function as second which is orally integrable.
- (3) If there is only one function whose integral is not known multiply it by one and take one as the 2^{nd} function.

16.

DEFINITE INTEGRALS

- (1) $\int_{a}^{b} f(x)dx = [g(x)]_{a}^{b} = g(b) g(a), where \delta f(x) dx = g(x)$
- (2) $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt = \int_{a}^{b} f(m) dm$
- (3) $\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$
- (4) $\int_{a}^{b} f(x) = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx, \ a < c < b.$
- (5) $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx; \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$
- (6) $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx \text{ if } f \text{ is even } \int_{-a}^{a} f(x) dx = 0 \text{ if } f \text{ is odd.}$
- (7) $\int_{0}^{2a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{0}^{a} f(2a x) dx$ If f(2a x) = f(x) then $\int_{0}^{2a} f(x) dx = 2 \int_{0}^{a} f(x) dx$

9664080155 ***